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Protecting the Right Ventricle in ARDS:
The Role of Prone Ventilation
ACUTE RESPIRATORY DISTRESS SYNDROME
(ARDS) is associated with high mortality (up to 46%) despite
best standards of supportive care.1 One of the major determi-
nants of mortality in severe ARDS is hemodynamic instability,
in particular pulmonary vascular dysfunction and right ven-
tricular (RV) dysfunction/failure2,3; however, cardiopulmonary
interactions in the context of ARDS are not understood fully.
In most ARDS studies, RV failure is defined as “acute cor
pulmonale” (ACP), which refers to an abrupt increase in RV
afterload. On echocardiography, this is characterized by septal
dyskinesia and RV dilatation with a ratio of RV end-diastolic
area (RVEDA) to left ventricular end-diastolic area (LVEDA)
40.6 and 41 for severe ACP.4,5 A recent risk score
developed for the prediction of ACP in ARDS demonstrated
several important clinical and physiologic parameters:
(a) pneumonia as a cause of ARDS, (b) ratio of arterial
oxygen partial pressure to fractional inspired oxygen (PaO2/
FiO2) o150 mmHg, (c) arterial carbon dioxide partial
pressure (PaCO2) Z48 mmHg, and (d) driving pressure
Z18 cm H2O.

5 The aforementioned variables have a statis-
tically significant correlation with development of ACP with a
reported incidence of 19%, 34%, and 74% in ARDS patients
with risk scores of 2, 3, and 4, respectively.5
Pathophysiology of RV Injury in ARDS

Pulmonary vascular dysfunction and RV injury are char-
acterized by increased pulmonary vascular resistance (PVR),
pulmonary hypertension, and uncoupling between the RV and
pulmonary circulations. ARDS-related pathophysiologic fac-
tors contributing to this include the following: hypoxic/
hypercapnic pulmonary vasoconstriction, imbalance of vasoac-
tive mediators (eg, increased endothelin-1 levels) and
increased vasomotor tone, development of intravascular micro-
thrombi, extrinsic vessel compression (due to reduction in lung
volume, interstitial edema, and atelectasis), and pulmonary
vascular remodeling.6–8 These factors are related to mechan-
ical ventilation and pulmonary mechanics with a negative
impact on RV function in ARDS (alveolar vessel collapse
jvca.2018.01.007
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leading to increased RV afterload): extremes of lung volume
and imbalance between overdistension and recruitment,9–13

plateau pressure (alveolar end-inspiratory pressure) 427 cm
H2O,

13 and driving pressure (plateau pressure minus total
positive end-expiratory pressure) 418 cm H2O.

3,5
RV Function during Prone Ventilation—Evaluating the
Evidence

Correction of hypoxemia/hypercapnia along with pressure
and volume-limited mechanical ventilation potentially could
minimize the adverse heart–lung interactions in ARDS. Prone
mechanical ventilation has been used as a strategy to improve
oxygenation and respiratory mechanics in the most severe
form of ARDS (PaO2/FiO2 o150 mmHg) when conventional
modes of ventilation fail. Early randomized trials showed a
consistent association between prone ventilation and improve-
ment in gas exchange, but no clear mortality benefit.14–16 One
might argue that this is because the proning sessions were of
short duration (6-8 hours), ventilatory strategies used were
nonprotective, and there was supine/prone crossover.14–16

Vieillard-Baron et al. examined the effect of prone ventila-
tion on RV function, using transesophageal echocardiography
(before and after the first 18-hour session of proning) in 42
patients with severe ARDS (defined as PaO2/FiO2 o100
mmHg).17 Acute cor pulmonale was present in 50% of the
cohort, and prone position ventilation was associated with a
significant reduction in plateau pressure and PaCO2, with
associated improvement in RV function (reduced RVEDA/
LVEDA ratio and septal dyskinesia).17 Joswiak et al. showed
that in patients with moderate to severe ARDS receiving
pressure-limited low-tidal-volume ventilation, who are preload
dependent, proning was associated with a decrease in RV
afterload, increased cardiac index, and significant reduction in
RVEDA/LVEDA ratio.18 The PROSEVA (Proning Severe
ARDS patients) randomized controlled trial demonstrated that
prone positioning patients with a PaO2/FiO2 o150 mmHg
subjected to low-tidal-volume ventilation and neuromuscular
blockade confers significant mortality benefit (16.8% absolute
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reduction in 28-day all-cause mortality compared to the supine
group).19 The “prone ventilation” arm of PROSEVA had fewer
cardiac arrests and more cardiac failure-free days at 28 days
after recruitment, which could suggest that the RV-protective
effect of prone positioning may contribute to survival benefit.
Five systematic reviews and meta-analyses based on indi-

vidual or grouped data from randomized controlled trials
(including PROSEVA) have shown that patients with moder-
ate to severe ARDS are likely to benefit from early prone
positioning; none of the studies, however, explored cardiovas-
cular outcomes.20–24 The recently published APRONET
(ARDS Prone Position Network)25 study is the first multi-
center international prospective prevalence study dedicated
specifically to the use of prone positioning. APRONET
enrolled 735 ARDS patients (Berlin Definition)26 from 20
countries (141 intensive care units) and showed that 32.9% of
severe ARDS patients are being prone positioned. Prone
ventilation is associated with significant improvement in gas
exchange and a decrease in driving pressure, known to be a
risk factor for ACP and an independent predictor of mortality
in ARDS.1,5,27 Of note, the 2 main reasons for not prone
positioning patients in the APRONET study were (1) hypox-
emia being not severe enough to justify prone positioning,
based on the clinicians’ judgment (PaO2/FiO2 o150 mmHg
had the lowest odds ratio for predicting the risk for not prone
positioning); and (2) hemodynamic instability.25 The latter
suggests that intensive care specialists may not be aware that
changes in cardiovascular physiology associated with prone
position in ARDS are advantageous, in particular reversal of
RV-pulmonary artery (PA) uncoupling, and RV unloading
during prone positioning could confer a mortality benefit.17,18

However, a major concern remains: It may be difficult for
intensivists to distinguish between ACP and other potential
mechanisms of circulatory failure, such as vasodilatory shock
as seen in sepsis. This dilemma highlights the value of critical
care echocardiography in this setting.
In cases of ARDS complicated by refractory hypercapnia

despite prone ventilation, extracorporeal devices could be
considered to mitigate the deleterious effects of hypercapnia
on the RV (increased RV afterload and RV-PA uncoupling). In
particular, venovenous extracorporeal CO2 removal (ECCO2R)
offers CO2 clearance and facilitates ultraprotective ventilation
(tidal volume of 4 mL/kg predicted body weight and reduction
in plateau pressure).28 In an experimental porcine ARDS
model, Morimont et al. showed that institution of ECCO2R
effectively reduced hypercapnia during protective ventilation,
reduced PVR and mean PA pressure, and improved RV-PA
coupling.29 However, given the experimental and observa-
tional nature of current evidence pertaining to the use of
ECCO2R, it cannot be recommended as an accepted therapeu-
tic measure or routine adjuvant therapy to prone ventilation in
ARDS and RV protection at this time.30

Feasibility and safety of prone positioning for ARDS in the
context of cardiothoracic surgery has not been tested in
randomized controlled trials. In fact, 2 of the PROSEVA trial
exclusion criteria were recent sternotomy and lung transplan-
tation.19 Retrospective data suggest that prone positioning can
be applied safely as a bridge to recovery in lung transplanta-
tion recipients with refractory hypoxemia secondary to pri-
mary graft dysfunction, and it is associated with a decrease in
vasoactive drug support.31 A proportion of lung transplant
candidates have preoperative RV dysfunction/failure second-
ary to chronic lung disease, which may be worsened by
perioperative ARDS.32 It is therefore reasonable that prone
ventilation be considered in this cohort of patients.

Mechanisms of RV Unloading During Prone Positioning in
ARDS

The physiological effect of prone positioning on the RV and
pulmonary circulation can be explained by the following
potential mechanisms:

Reduction in Pulmonary Vascular Tone

The ventral–dorsal transpulmonary pressure difference is
reduced during prone positioning, and as ventilation becomes
more homogeneous and the distribution of perfusion remains
constant (in supine and prone positions), intrapulmonary shunt
decreases and oxygenation improves.33 The homogenous
pulmonary aeration during prone positioning leads to reduced
regional stress and strain and better carbon dioxide clear-
ance.33 The reduction in hypoxic/hypercapnic pulmonary
vasoconstriction results in decreased PVR, a decrease in RV
afterload, and improved RV-PA coupling.33,34

Reduction in Driving Pressure

Driving pressure, a surrogate currently used for dynamic
lung stress, can be calculated as the difference between plateau
pressure (end-inspiratory alveolar pressure) and total positive-
end expiratory pressure (PEEP), and reflects the pressure
generated in the respiratory system by the tidal volume.27,35

It has been shown that when high PEEP is applied during
prone ventilation, the associated reduction in tidal hyperinfla-
tion and alveolar cyclic recruitment/derecruitment results in a
reduction in driving pressure,36 a reduction in pulmonary
capillary and extra-alveolar vessel compression, and a drop in
PVR.12

Increase in Central Blood Volume

During prone ventilation there is an increase in central blood
volume due to the shift of blood from the splanchnic into the
thoracic circulation, which may induce recruitment of pul-
monary microvasculature, increase in pulmonary capillary
wedge pressure, and reduction in PVR and RV afterload.18,33

This probably is true especially in patients with preliminary
relative or absolute hypovolemia.

Protection Against Ventilator-Induced Lung Injury

Injurious mechanical ventilation can further exacerbate RV
dysfunction in ARDS. It is assumed that cyclic interruption
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and exaggeration of pulmonary blood flow during high-
pressure ventilation may cause pulmonary microvascular
injury, leading to cor pulmonale.36 Recent data suggest that
not only is the RV dysfunction the consequence of VILI, but
also it could promote in part such a ventilator-induced lung
injury (VILI).37,38 The protective effect of prone positioning
against VILI potentially could be explained by ventilatory
homogeneity, a decrease in tidal hyperinflation, and homo-
genous distribution of strain.33–37

In conclusion, a substantial body of evidence supports the
pivotal role of prone positioning in reducing mortality outcomes in
severe ARDS. RV failure is a predictor of mortality in ARDS, and
therefore monitoring and protecting the RV should be made an
integral part of a heart and lung protective strategy in severe
ARDS. The recommended RV-protective ventilatory goals (driv-
ing pressure o18 cm H2O, PaCO2 o48 mmHg, and PaO2/FiO2

4150 mmHg)5,11 could be met with prone ventilation and no
need for recruitment maneuvers and titrated high PEEP, recently
found to be associated with mortality.39 Adequately powered and
well-designed randomized controlled trials should test the hypoth-
esis that prone positioning ARDS patients with severe RV
dysfunction regardless of PaO2/FiO2 ratio improves patient-centred
outcomes.
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